THE NEW VALUE FRONTIER



High performance milling | MEV

# MEV



### High performance, multi-functional milling cutters

### Newly developed triangle inserts provide numerous solutions

High performance - low cutting forces and higher rigidity for excellent chatter resistance Multi-functional - can be used in shouldering, slotting, and ramping applications



**High performance milling** 

MEV

Newly developed triangular inserts providing low cutting force and increased toolholder rigidity. High performance, economical, and multi-functional milling solutions.

### High performance: low cutting force and high rigidity

Newly developed vertical triangle inserts with 3 cutting edges achieve stable machining with reduced chattering.



MEV vs. competitor



The MEV's large A.R. produces lower cutting forces and the vertical triangle inserts provide a higher rigidity.

The great performance of the multi-purpose MEV triangle inserts combines both advantages of conventional positive and negative type inserts.



### Keeping A.R. max. at 17°, provides lower cutting force than the positive insert types of competitors

Cuttting force comparison (internal evaluation)



Cutting conditions: Vc = 200 m/min, ap  $\times$  ae = 3  $\times$  18 mm, fz = 0.10 mm/t, ø20 (3 inserts), Dry, workpiece: 42CrMo4

### Low cutting force and large optimal web thickness provides excellent chattering resistance

Chattering resistance comparison (internal evaluation)

Shouldering



Cutting conditions: Vc = 200 m/min, ap  $\times$  ae = 3  $\times$  18 mm, fz = 0.10 mm/t, ø20 (3 inserts), dry, workpiece: 42CrMo4

### Slotting



Cutting conditions: Vc = 220 m/min, ap = 3 mm (Slotting), fz = 0.10 mm/t, ø20 (3 inserts), dry, workpiece: 42CrMo4

### Provides excellent surface finish and superior cutting accuracy of the wall

Surface finish comparison (internal evaluation)



Cutting conditions : Vc = 180 m/min, ap  $\times$  ae  $= 3 \times 40$  mm, fz = 0.1 mm/t, ø50 (5 inserts), dry, workpiece: C50



Cutting conditions: Vc = 200 m/min, ap  $\times$  ae = 3  $\times$  10 mm (4 pass), fz = 0.15 mm/t, ø50 (5 inserts), dry, workpiece: C50

\*Accuracy of the wall surface varies depending on cutting conditions, machining environment, and insert combination.

Chattering



### The economical choice: 3 cutting edge insert with long tool life

### Insert

Unique triangle inserts with 3 cutting edges. PR15 series utilizes MEGACOAT NANO coating technology with excellent wear and adhesion resistance.



Achieve long tool life with the combination of a tough substrate and a special nano coating layer

Stable machining with excellent wear resistance

### Toolholder

Engineered with state-of-the-art simulation and analysis technology, the MEV is built to reduce stress on the cutter body. Increased hardness and wide contact surface for improved durability.





3 cutting edges combined with PR15 series MEGACOAT NANO coating technology maintains long tool life.

Improved toolholder toughness and durability.

### Long tool life with excellent wear resistance

Cutting edge (after machining 14 min)



Cutting conditions: Vc = 180 m/min, ap × ae = 3 × 10 mm, fz = 0.1 mm/t, ø20, dry, workpiece: X153CrMoV12 (30~35HS)

### Improved stability with superior fracture resistance



Multi-functional: The MEV can perform a wide variety of machining processes

### Great performance in shouldering, slotting, and ramping applications (D.O.C. 6 mm or less)

Chip example (slotting)

3

![](_page_4_Picture_9.jpeg)

Cutting conditions: Vc = 150 m/min, ap = 6 mm (Slotting) fz = 0.2 mm/t,  $\phi$ 20 (3 insert), dry, workpice: ST44-2

![](_page_4_Picture_11.jpeg)

![](_page_4_Picture_12.jpeg)

Good chip evacuation with a unique insert chipbreaker design.

Stable machining in applications like slotting and ramping where chip recutting issues are common.

![](_page_5_Figure_1.jpeg)

### **Toolholder dimensions**

|        | Description |     |                  | Availability | No. of  |    | Dir    | mensions (m | ım) |      | Rake angle |      | Coolant | Weight  | Drawing | Max. revolution |
|--------|-------------|-----|------------------|--------------|---------|----|--------|-------------|-----|------|------------|------|---------|---------|---------|-----------------|
|        |             | U   | cscription       | rivanability | inserts | DC | DCON   | LF          | LH  | APMX | A.R.(MAX.) | R.R. | hole    | (kg)    | Diawing | (min-1)         |
|        |             | MEV | 20-S16-06-2T     | •            | 2       | 20 | 16     | 110         | 26  |      |            | -38° |         | 0.2     |         | 32,000          |
|        |             |     | 22-S20-06-3T     | •            |         | 22 | 20     | 110         | 20  |      |            | _27° |         | 0.2     |         | 29,000          |
|        | ght)        |     | 25-S20-06-3T     | •            | 3       | 25 | 20     | 120         | 20  |      |            | -37  |         | 0.3     |         | 25,000          |
|        | (Strai      |     | 28-S25-06-3T     | •            |         | 28 |        | 120         | 25  | 6    | +17°       | 269  | Voc     | 0.4     | Eig 1   | 23,000          |
|        | dard        |     | 30-S25-06-4T     | •            |         | 30 | 25 130 | 120         | 32  |      | -30-       | les  | 0.5     | rig. i  | 21,500  |                 |
|        | Stan        |     | 32-S25-06-4T     | •            | 4       | 32 |        | 150         | 32  |      |            | 260  |         | 0.5     |         | 20,000          |
|        |             |     | 40-S32-06-5T     | •            | 5       | 40 | 22     | 150         | 50  |      |            | -30  |         | 1.0     |         | 16,000          |
| ar a   |             |     | 50-S32-06-5T     | •            |         | 50 | 52     | 120         | 40  |      | +16°       | -36° |         | 0.9     |         | 13,000          |
| al she |             | MEV | 20-S20-06-2T     | •            | 2       | 20 | 20     | 110         | 30  |      |            | -38° |         | 0.2     |         | 32,000          |
| indric | nk          |     | 20-S20-06-3T     | •            | 3       | 20 | 20     | 110         | 50  | 6    | +17°       |      |         | 0.2     | Fig.2   | 52,000          |
| 2      | ze shë      |     | 25-S25-06-2T     | •            | 2       | 25 | 25     | 120         | 32  |      |            | -37° | Yes     | Yes 0.4 |         | 25 000          |
|        | mesi        |     | 25-S25-06-3T     | •            | 3       | 25 | 25     | 120         | 52  |      |            |      |         |         |         | 25,000          |
|        | Sai         |     | 32-S32-06-3T     | •            | د ا     | 33 | 27     | 120         | 40  |      |            |      |         | 0.7     | 0.7     |                 |
|        |             |     | 32-S32-06-4T     | •            | 4       | JZ | 52     | 150         | 40  |      |            | 50   |         | 0.7     |         | 20,000          |
|        |             | MEV | 20-S18-06-150-2T | •            |         | 20 | 18     | 150         | 30  |      |            | -38° |         | 0.3     | Fig.1   | 32 000          |
|        | shan        |     | 20-S20-06-150-2T | •            | ,       | 20 | 20     | 150         | 40  | 6    | 17º        | 50   | Voc     | 0.5     |         | 52,000          |
|        | Long sh     |     | 25-S25-06-170-2T | •            |         | 25 | 25     | 170         | 50  |      | +17°       | -37° | lies    | 0.6     | Fig.2   | 25,000          |
|        |             |     | 32-S32-06-200-2T | •            |         | 32 | 32     | 200         | 65  |      |            | -36° |         | 1.1     |         | 20,000          |

• : Available

### Spare parts and applicable inserts

|                |             |              |             | Pa                     | arts                |            | Applicat          | le inserts |
|----------------|-------------|--------------|-------------|------------------------|---------------------|------------|-------------------|------------|
|                | Descriptio  | n            | Clamp screw | Wrench                 | Anti-seize compound | Arbor bolt |                   |            |
|                | Description |              |             | 25                     |                     |            | Low cutting force |            |
| End mills      | MEV         | 06T          |             |                        |                     | -          |                   |            |
|                | MEV         | 032R-06-4T-M |             |                        |                     | НН8У25     |                   |            |
| Face mills     |             | 040R-06-5T-M |             | DTPM 10                | D 27                | TITIONZS   |                   |            |
|                |             | 050R-06-5T-M | 30-3070TRF  | DIFM-10                | F-37                | HH10X30    | TOMTOS CM         | TOMTO6 SM  |
|                | MEV         | 20-M10-06-2T |             | Recommended torque for |                     | -          |                   | 10/01003/0 |
| Modular boads  |             | 20-M10-06-3T |             | Insert screw 2.0 N°m   |                     | -          |                   |            |
| mouuldi fiedus |             | 25-M12-06-3T |             |                        |                     | -          |                   |            |
|                |             | 32-M16-06-4T |             |                        |                     | -          |                   |            |

Caution with max. revolution When running an end mill or a cutter at the maximum revolution, the insert or the cutter may be damaged by centrifugal force. Coat anti-seize compound thinly on portion of taper and thread prior to installation.

![](_page_6_Figure_1.jpeg)

### Toolholder dimensions

|     | Description  | Avail   | ail- No. of<br>lity inserts |    | Dimensions (mm) |      |       |       |     |      |     |      |      | Rake angle     |      | Coolant | Waight | May revolution       |
|-----|--------------|---------|-----------------------------|----|-----------------|------|-------|-------|-----|------|-----|------|------|----------------|------|---------|--------|----------------------|
|     |              | ability |                             | DC | DCSFMS          | DCB  | DCCB1 | DCCB2 | LF  | CBDP | KDP | KWW  | АРМХ | A.R.<br>(MAX.) | R.R. | hole    | (Kg)   | (min <sup>-1</sup> ) |
| MEV | 032R-06-4T-M | •       | 4                           | 32 | 30              | 13.5 | 35    | 10    | 5.6 | 0.4  |     | 17º  |      |                | 0.1  | 20,000  |        |                      |
|     | 040R-06-5T-M | •       | 5                           | 40 | 38              | 10   | 15    | , ,   | 40  | 19   | 5.0 | 0.4  | 6    | +1/            | -36° | Yes     | 0.2    | 16,000               |
|     | 050R-06-5T-M | •       | 5                           | 50 | 48              | 22   | 18    | 11    | 40  | 21   | 6.3 | 10.4 |      | +16°           |      |         | 0.4    | 13,000               |

• : Available

### **MEV** (Modular heads)

![](_page_6_Figure_6.jpeg)

### **Toolholder dimensions**

|     |              | Avail | No. of  |    | Dimensions (mm) |      |     |    |           |    |      |                | Rake angle |      | Max revolution       |
|-----|--------------|-------|---------|----|-----------------|------|-----|----|-----------|----|------|----------------|------------|------|----------------------|
|     | Description  |       | inserts | DC | DCSFMS          | DCON | OAL | LF | CRKS      | Н  | АРМХ | A.R.<br>(MAX.) | R.R.       | hole | (min <sup>-1</sup> ) |
| MEV | 20-M10-06-2T | •     | 2       | 20 | 10 7            | 10 F | 40  | 20 | M10×D1 5  | 15 |      |                | 200        |      | 22.000               |
|     | 20-M10-06-3T | •     |         | 20 | 10.7            | 10.5 | 40  | 50 | MIUXPI.5  | 15 | 6    | 17°            | -30        | Vac  | 52,000               |
|     | 25-M12-06-3T | •     |         | 25 | 23              | 12.5 | 56  | 35 | M12×P1.75 | 19 |      | +1/            | -37°       | Tes  | 25,000               |
|     | 32-M16-06-4T | •     | 4       | 32 | 30              | 17   | 62  | 40 | M16×P2.0  | 24 |      |                | -36°       |      | 20,000               |

• : Available

![](_page_7_Figure_1.jpeg)

### Dimensions

|             |        | Avail-  |           | Dimensi | ons (mm) |           |              | Arbor (Double-face clamping spindle) |                     |  |
|-------------|--------|---------|-----------|---------|----------|-----------|--------------|--------------------------------------|---------------------|--|
| Description |        | ability | LF        | BD      | DCONWS   | CRKS      | Coolant hole | CCMS                                 | Applicable end mill |  |
| BT30K-      | M10-45 | •       | 18.7 10.5 |         | M10×P1.5 | Vec       | DT20         | MEV20-M10                            |                     |  |
|             | M12-45 | •       | 45        | 23      | 12.5     | M12×P1.75 | les          | UCIO                                 | MEV25-M12           |  |
| BT40K-      | M10-60 | •       | 60        | 18.7    | 10.5     | M10×P1.5  |              |                                      | MEV20-M10           |  |
|             | M12-55 | •       | 55        | 23      | 12.5     | M12×P1.75 | Yes          | BT40                                 | MEV25-M12           |  |
|             | M16-65 | •       | 65        | 30      | 17       | M16×P2.0  |              |                                      | MEV32-M16           |  |

• : Available

### Actual end mill depth

![](_page_7_Figure_6.jpeg)

![](_page_7_Figure_7.jpeg)

|                   |                                  |     | Carbon steel •  | Alloy steel      |           |     | *          | ☆            |                |
|-------------------|----------------------------------|-----|-----------------|------------------|-----------|-----|------------|--------------|----------------|
|                   | Classification of usage          | P   | Mold steel      |                  |           |     | *          | ☆            |                |
|                   |                                  |     | Austenitic sta  | inless steel     |           |     | ☆          | *            |                |
|                   |                                  | М   | Martensitic st  | ainless steel    |           |     |            | ☆            | *              |
|                   | ★ : Roughing / 1st choice        |     | Precipitation I | nardened stainle | ess steel |     |            | *            |                |
|                   | ☆: Roughing / 2nd choice         | v   | Gray cast iron  |                  |           |     | ☆          |              |                |
|                   | : Finishing / 1st choice         | ĸ   | Nodular cast i  | ron              |           |     | ☆          |              |                |
|                   | : Finishing / 2nd choice         | N   | Non-ferrous n   | naterial         |           |     |            |              |                |
|                   | In case hardness is under 45 HRC | ç   | Heat resistant  | alloy            |           |     |            | ☆            | *              |
|                   |                                  | د   | Titanium alloy  | /                |           |     |            | *            |                |
|                   |                                  | Н   | Hard material   | s                |           |     |            |              |                |
|                   |                                  |     | [               | )imensions (mm   | )         |     | MEG/<br>NA | acoat<br>Ino | CVD<br>Coating |
| Insert            | Description                      | IC  | S               | D1               | BS        | RE  | PR1525     | PR1535       | CA6535         |
| General purpose   | TOMT 060508ER-GM                 | 7.2 | 5.7             | 3.4              | 1.5       | 0.8 | •          | •            | •              |
| Low cutting force | TOMT 060508ER-SM                 | 7.2 | 5.7             | 3.4              | 1.5       | 0.8 | •          | •            | •              |
| ,                 |                                  |     |                 |                  |           |     |            |              | : Available    |

### Recommended chipbreaker range

![](_page_8_Figure_3.jpeg)

![](_page_8_Figure_4.jpeg)

Cutting conditions: Vc = 150 m/min, ae = DC/2 mm, workpiece: C50

Cutting conditions: Vc = 150 m/min, ae = DC mm, workpiece: C50

### **Recommended cutting conditions** $\bigstar$ : 1st recommendation $\precsim$ : 2nd recommendation

| ~       |                                        |                           | Recomr                      | nended insert grade (Cutting speed Vc: | : m/min)                    |
|---------|----------------------------------------|---------------------------|-----------------------------|----------------------------------------|-----------------------------|
| pbreake | Workpiece                              | Feed (fz: mm/t)           | MEGACO                      | AT NANO                                | CVD coating                 |
| Ē       |                                        |                           | PR1535                      | PR1525                                 | CA6535                      |
|         | Carbon steel                           | 0.08 - <b>0.15</b> - 0.25 | 120 − <b>180</b> − 250      | ★<br>120 - <b>180</b> - 250            | _                           |
|         | Alloy steel                            | 0.08 - <b>0.15</b> - 0.2  | 100 − <b>160</b> − 220      | ★<br>100 - <b>160</b> - 220            | _                           |
|         | Mold steel                             | 0.08 - <b>0.12</b> - 0.2  | 80 – <b>140</b> – 180       | ★<br>80 - <b>140</b> - 180             | _                           |
|         | Austenitic stainless steel             | 0.08 - <b>0.12</b> - 0.15 | 100 − <b>160</b> − 200      | 100 - <b>160</b> - 200                 | _                           |
| GM      | Martensitic stainless steel            | 0.08 - <b>0.12</b> - 0.2  | ☆<br>150 – <b>200</b> – 250 | _                                      | ★<br>180 - <b>240</b> - 300 |
|         | Precipitation hardened stainless steel | 0.08 - <b>0.12</b> - 0.2  | ★<br>90 - <b>120</b> - 150  | —                                      | _                           |
|         | Gray cast iron                         | 0.08 - <b>0.18</b> - 0.25 | _                           | 120 − <b>180</b> − 250                 | _                           |
|         | Nodular cast iron                      | 0.08 - <b>0.15</b> - 0.2  | _                           | 100 – <b>150</b> – 200                 | _                           |
|         | Ni-base heat-resistant alloy           | 0.08 - <b>0.12</b> - 0.15 | 20 − <b>30</b> − 50         | —                                      | ★<br>20 - <b>30</b> - 50    |
|         | Titanium alloy                         | 0.08 - <b>0.15</b> - 0.2  | 40 − <b>60</b> − 80         | _                                      | _                           |
|         | Carbon steel                           | 0.08 - <b>0.15</b> - 0.2  | 120 − <b>180</b> − 250      | ★<br>120 - <b>180</b> - 250            | _                           |
|         | Alloy steel                            | 0.08 - <b>0.12</b> - 0.18 | 100 − <b>160</b> − 220      | ★<br>100 - <b>160</b> - 220            | _                           |
|         | Mold steel                             | 0.08 - <b>0.1</b> - 0.15  | ☆<br>80 <b>- 140</b> - 180  | ★<br>80 - <b>140</b> - 180             | _                           |
| CM      | Austenitic stainless steel             | 0.08 - <b>0.1</b> - 0.15  | ★<br>100 - <b>160</b> - 200 | 100 - <b>160</b> - 200                 | _                           |
| JIVI    | Martensitic stainless steel            | 0.08 - <b>0.1</b> - 0.15  | 150 − <b>200</b> − 250      | _                                      | ★<br>180 - <b>240</b> - 300 |
|         | Precipitation hardened stainless steel | 0.08 - <b>0.1</b> - 0.15  | 90 – <b>120</b> – 150       | _                                      | _                           |
|         | Ni-base heat-resistant alloy           | 0.08 - <b>0.1</b> - 0.12  | 20 − <b>30</b> − 50         | _                                      | ★<br>20 - <b>30</b> - 50    |
|         | Titanium alloy                         | 0.08 - <b>0.12</b> - 0.15 | ★<br>40 - <b>60</b> - 80    | _                                      | _                           |

The number in **bold font** is recommended starting conditions. Adjust the cutting speed and the feed rate within the above conditions according to the actual machining situation. Cutting with coolant is recommended for ni-base heat resistant alloy and titanium alloy. Cutting with coolant is recommended to get good finished surface.

![](_page_9_Picture_4.jpeg)

### **Ramping reference data**

| Description | Cutter dia. DC (mm)         | 20    | 22    | 25    | 28    | 30    | 32    | 40    | 50    |
|-------------|-----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| 11511       | Max. ramping angle RMPX (°) | 1.00  | 0.80  | 0.65  | 0.60  | 0.55  | 0.50  | 0.40  | 0.30  |
| MEV06       | tan RMPX                    | 0.017 | 0.014 | 0.011 | 0.010 | 0.010 | 0.009 | 0.007 | 0.005 |

Make ramping angle smaller if chips are too long

### **Ramping tips**

Ramping angle should be under RMPX (maximum ramping angle) in the above cutting conditions

Reduce recommended feed rate in cutting conditions less than 70%

| Formula for max. cutting         | 1 - | ар       |
|----------------------------------|-----|----------|
| Length (L) at max. ramping angle | L – | tan RMPX |

![](_page_10_Figure_7.jpeg)

### Helical milling tips

For helical milling, use between min. drilling dia. and max. drilling dia.

![](_page_10_Figure_10.jpeg)

For helical milling, use between min. cutting diameter and max. cutting diameter Keep machine depth per rotation less than max. ap (APMX) in the cutter dimensions chart Use caution to eliminate incidences caused by producing long chips

### **Peck milling**

![](_page_10_Figure_13.jpeg)

|             |                       | Unit: mm                                         |
|-------------|-----------------------|--------------------------------------------------|
| Description | Max. Pd cutting depth | Min. Cutting length x for<br>flat bottom surface |
| MEV06       | 0.25                  | DC-3                                             |

It is recommended to reduce feed by 25% of recommendation until the center core is removed when traversing after drilling

Axial feed rate recommendation per revolution is f < 0.1mm/rev

90° milling with double sided 4-edge inserts

## **MEW Series**

- Economical 4-edge insert
- · Improved toolholder durability and insert installation accuracy
- Chattering resistance for excellent surface finish

![](_page_11_Picture_6.jpeg)

Double-sided 6-edge insert

# MFWN

- Sharp cutting due to lower cutting forces
- Resistant to chattering and applicable to long overhang
- MEGACOAT NANO coated insert grade for long tool life

DLC coated insert grade for aluminum machining

![](_page_11_Picture_13.jpeg)

New grade PDL025

![](_page_11_Picture_15.jpeg)

![](_page_11_Picture_16.jpeg)